

AD/ADVANTAGE

MANTIS SUPRA SQL Programming
OS/390, VSE/ESA

P39-3105-00

AD/Advantage® MANTIS SUPRA SQL Programming OS/390 VSE/ESA

Publication Number P39-3105-00

� 1989–1998, 2001 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com

Release information for this manual
AD/Advantage MANTIS SUPRA SQL Programming, OS/390, VSE/ESA,
P39-3105-00, is dated October 30, 2001. This document supports
Release 5.5.01 of MANTIS SUPRA SQL Support.

We welcome your comments
We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for AD/Advantage

All customers Web: http://supportweb.cincom.com
U. S. A. customers Phone: 1-800-727-3525
 FAX: (513) 612-2000

Attn: AD/Advantage Support
 Mail: Cincom Systems, Inc.

Attn: AD/Advantage Support
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

Customers outside U. S. A. All: Visit the support links at
http://www.cincom.com to find
contact information for your nearest
Customer Service Center.

http://supportweb.cincom.com/
http://www.cincom.com/

MANTIS SUPRA SQL Programming v

Contents

About this book vii
Using this document .. vii

Document organization... vii
Conventions... viii

MANTIS documentation series...xi
Educational material ...xii

Overview of MANTIS SQL support 13
Embedding SQL statements in MANTIS programs.. 14
Static and dynamic SQL statements .. 15

Static SQL statements... 15
Dynamic SQL statements.. 15
Coding static and dynamic SQL statements ... 15

Embedding SQL statements in MANTIS programs 17
Rules for embedding SQL statements in a MANTIS program 17
Accessing multiple SUPRA databases From MANTIS... 20
Coding host variables in SQL statements .. 21
Coding indicator variables in SQL statements.. 25
Converting data between MANTIS SQL support and SUPRA 26

Programming considerations 27
Scope of SQL cursors and statements... 29
SQL WHENEVER statement.. 30

Using SQL WHENEVER as a declarative statement 34
Scope of the WHENEVER statement ... 34

Contents

vi P39-3105-00

SQLCA in MANTIS SQL support ..35
Binding with the high-performance option (HPO) ...39
SUPRA's COMMIT and ROLLBACK versus MANTIS SQL support's COMMIT and
RESET ..39
Running a program from a line number ..40
Error messages...41
Maximum number of host variables..42
Using ENTRY statement parameters as host variables ...42

Dynamic SQL statements 45
SQLDA statement and function ..47

Allocate an SQLDA ..49
Deallocate an SQLDA SQLDA(sqlda_name)=QUIT.....................................50
Set SQLDA header information ...51
Move data into an SQLDA repeating group ...54
Read header elements...57
Move data from an SQLDA repeating group into a MANTIS program59

SQL statements larger than 254 characters ...61

Sample MANTIS SQL support programs 63
Insert program using static SQL statements...64
Insert program using dynamic SQL statements..65
Update program using static SQL statements ..66
Update program using dynamic SQL statements ...67
Select program using static SQL statements..68
Select program using dynamic SQL statements...69
Delete program using static SQL statements ...70
Delete program using dynamic SQL statements ..71
Column select program using dynamic SQL statements..72

Features not supported 73

Comparing SQL in MANTIS SQL support to SQL in COBOL 75

SQL keywords 79

Index 81

MANTIS SUPRA SQL Programming vii

About this book

Using this document
MANTIS SQL Support is used to create MANTIS applications that access
SUPRA with SQL. This manual explains how to code MANTIS SQL
programs. Beginning with an overview, the manual discusses the rules
for combining MANTIS and SQL, programming considerations and
dynamic MANTIS SQL. Sample programs are provided.

This manual supplements MANTIS Language, OS/390, VSE/ESA,
P39-5002, and Cincom’s documentation on SUPRA. System
maintenance considerations for MANTIS SQL Support are in MANTIS
Administration, OS/390, VSE/ESA, P39-5005.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of MANTIS SQL support
Provides an overview of MANTIS SQL support and this manual.

Chapter 2—Embedding SQL statements in MANTIS programs
Describes how to code host and indicator variables in SQL
statements, convert data between MANTIS support and the SQL
database, and specify SQL data types in host variables.

Chapter 3—Programming considerations
Provides limits and specific considerations for MANTIS SQL support.

Chapter 4—Dynamic SQL statements
Describes the differences between dynamic SQL statements in
MANTIS SQL Support and SQL in COBOL.

About this book

viii P39-3105-00

Appendix A—Sample MANTIS SQL support programs
Contains sample MANTIS SQL support programs.

Appendix B—Features not supported
Lists features not supported by MANTIS SQL.

Appendix C—Comparing SQL in MANTIS SQL support to SQL in
COBOL
Provides general considerations applied to SQL in MANTIS SQL
Support as compared to SQL in COBOL.

Appendix D—SQL keywords
Lists the SQL keywords used by MANTIS SQL support.

Index

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Yellow-
highlighted, red
code

Indicates an emphasized section of
code.

00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE

CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

About this book

MANTIS SUPRA SQL Programming ix

Convention Description Example
Brackets [] Indicate optional selection of

parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a program name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

NEXT

PRIOR

FIRST

LAST

�

�

�
�
�
�

�

�

�
�
�
�

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

FIRST

LAST
begin

�

�
�

�
�

�

�
�

�
�

About this book

x P39-3105-00

Convention Description Example
Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the system
defaults to ON.

[] []
SCROLL

ON
OFF

 ,row col

�

�

�
�
�

�

�

�
�
�

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either PRO or PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter (A), (A,B), (A,B,C), or some
other argument in the same
pattern.

(argument,...)

UPPERCASE Indicates MANTIS reserved words.
You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you can
supply a name for the program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
; semicolon
' single quotation mark
" " double quotation marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

About this book

MANTIS SUPRA SQL Programming xi

MANTIS documentation series
MANTIS is an application development system designed to increase
productivity in all areas of application development, from initial design
through production and maintenance. MANTIS is part of AD/Advantage,
which offers additional tools for application development. Listed below
are the manuals offered with MANTIS in the IBM® mainframe
environment, organized by task. You may not have all the manuals listed
here.

MASTER User tasks

♦ MANTIS Installation, Startup, and Configuration, MVS/ESA, OS/390,
P39-5018

♦ MANTIS Installation, Startup, and Configuration, VSE/ESA, P39-5019

♦ MANTIS Administration, OS/390, VSE/ESA, P39-5005

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ MANTIS Administration Tutorial, OS/390, VSE/ESA, P39-5027

♦ MANTIS XREF Administration, OS/390, VSE/ESA, P39-0012

General use

♦ MANTIS Quick Reference, OS/390, VSE/ESA, P39-5003

♦ MANTIS Facilities, OS/390, VSE/ESA, P39-5001

♦ MANTIS Language, OS/390, VSE/ESA, P39-5002

♦ MANTIS Program Design and Editing, OS/390, VSE/ESA, P39-5013

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ AD/Advantage Programming, P39-7001

♦ MANTIS DB2 Programming, OS/390, VSE/ESA, P39-5028

About this book

xii P39-3105-00

♦ MANTIS SUPRA SQL Programming, OS/390, VSE/ESA, P39-3105

♦ MANTIS XREF, OS/390, VSE/ESA, OpenVMS, P39-0011

♦ MANTIS Entity Transformers, P39-0013

♦ MANTIS DL/I Programming, OS/390, VSE/ESA, P39-5008

♦ MANTIS SAP Facility, OS/390, VSE/ESA, P39-7000

♦ MANTIS WebSphere MQ Programming, P39-1365

♦ MANTIS Application Development Tutorial, OS/390, VSE/ESA, P39-
5026

Manuals marked with an asterisk (*) are listed twice because you use
them for multiple tasks.

Educational material
AD/Advantage and MANTIS educational material is available from your
regional Cincom education department.

MANTIS SUPRA SQL Programming 13

1
Overview of MANTIS SQL support

MANTIS is an application development system for developing, testing,
and executing applications interactively. MANTIS SQL Support is an
extended version of MANTIS. It enables you to create MANTIS
applications that access SUPRA by using SQL statements embedded in
MANTIS programs. The presence of MANTIS SQL Support does not
affect non-SQL MANTIS applications. MANTIS SQL Support programs
can run side-by-side or with non-SQL MANTIS programs, with neither
affecting the other.

Programming SQL in MANTIS SQL Support is similar to programming
SQL in other programming languages. This manual refers to SQL in
COBOL as representative of those languages. Because MANTIS is
interpretive rather than compiled, some differences exist between
MANTIS SQL Support and SQL in COBOL. These differences are noted
in this manual and summarized in Appendix C.

Chapter 1 Overview of MANTIS SQL support

14 P39-3105-00

Embedding SQL statements in MANTIS programs
You embed SQL statements in MANTIS programs as standard MANTIS
comments. You must precede each SQL statement with an EXEC_SQL
statement and follow it with an END statement, as shown below. Code
the SQL statement text between these statements as MANTIS comments
(each line must begin with a vertical bar (|), which is the MANTIS
comment character).

An example of an SQL SELECT statement in a MANTIS program is
shown below. Note that MANTIS automatically sets the indentation level
(number of preceding periods) for all the statements.
04590 ..TEXT EMPL_NAME(30)

04600 ..BIG EMPL_NAME_IV

04610 ..EXEC_SQL

04620 ...| SELECT EMPLNAME

04640 ...| INTO :EMPL_NAME:EMPL_NAME_IV

04650 ...| FROM EMPLOYEE.TABLE

04660 ...| WHERE EMPLNAME = 'SMITH'

04670 ..END

04680 ..DO CLEAN_UP

MANTIS variables can appear in SQL statements (they are required by
some SQL statements). MANTIS variables coded in SQL statements are
called host variables. They transfer data between MANTIS and SUPRA.
Host variables can be followed by indicator variables, which indicate the
presence of NULL or truncated data. A colon (:) must precede all host
and indicator variables coded in SQL statements. See “Embedding SQL
statements in MANTIS programs” on page 17 for more information on
host and indicator variables and embedding SQL statements in MANTIS
programs.

Static and dynamic SQL statements

MANTIS SUPRA SQL Programming 15

Static and dynamic SQL statements
MANTIS SQL Support for SUPRA provides two basic types of SQL
statements: static and dynamic.

Static SQL statements
Use static SQL statements when you know all the information required to
execute the statement (SQL table name, column names, etc.) before
executing the statement and the information will not change. SELECT,
INSERT, UPDATE, and DELETE are examples of static SQL statements.
In SQL in COBOL, you must code these statements in an application
program, precompile and compile them before executing them.

Dynamic SQL statements
Dynamic SQL statements let you execute other SQL statements that
have not been precompiled. Use dynamic SQL statements when you do
not know all of the information needed to execute the SQL statement
before executing the statement. An example is a query application that
allows the user to input the SQL statement to be executed from an online
terminal. PREPARE, DESCRIBE, EXECUTE, and EXECUTE
IMMEDIATE are examples of dynamic SQL statements. In SQL in
COBOL, you must precompile and compile dynamic SQL statements, but
not the SQL statements they execute. Dynamic SQL statements provide
flexibility, but require more computer resources and deliver less
performance than static SQL statements.

Coding static and dynamic SQL statements
You can code both static and dynamic SQL statements in MANTIS
programs. Both static and dynamic SQL statements can be contained in
a single MANTIS program. For an explanation of how to code SQL
statements in a MANTIS program, see “Embedding SQL statements in
MANTIS programs” on page 17.

Chapter 1 Overview of MANTIS SQL support

16 P39-3105-00

MANTIS SUPRA SQL Programming 17

2
Embedding SQL statements in
MANTIS programs

Rules for embedding SQL statements in a MANTIS program
You embed SQL statements in MANTIS programs within an EXEC_SQL-
END block. Begin each SQL statement with EXEC_SQL and terminate
with END. You must begin each line of SQL text between EXEC_SQL
and END with the MANTIS comment character, the vertical bar (|). All
SQL text within the EXEC_SQL-END block must conform to the rules of
SQL syntax (rather than MANTIS syntax), except where host language
syntax is permitted.

When you embed SQL statements in a MANTIS program, the following
rules apply:

♦ Only one SQL statement can be present within an EXEC_SQL-END
block.
..EXEC_SQL

...| OPEN C1

...| FETCH C1 INTO ...

...| CLOSE C1

..END

Invalid: Three SQL statements in the
EXEC_SQL-END block.

Chapter 2 Embedding SQL statements in MANTIS programs

18 P39-3105-00

♦ Any text between EXEC_SQL and END must be part of an SQL
statement and must be preceded by a vertical bar (|). Once
MANTIS SQL Support encounters a vertical bar, the rest of the
program line is considered part of a single SQL statement. Other
MANTIS statements or comments are not permitted.
..EXEC_SQL

...| OPEN C1

...OPENED=TRUE

..END

..EXEC_SQL

...| OPEN C1:OPENED=TRUE

..END

..EXEC_SQL

...| OPEN C1:|EMPLOYEE CURSOR

..END

Invalid: A statement other
than a comment is between
EXEC_SQL and END.

Invalid: A MANTIS statement
is appended to a valid SQL
statement.

Invalid: A comment is
appended to a valid SQL
statement.

♦ A colon within an EXEC_SQL-END block identifies a MANTIS host
variable, not a new statement.
..BIG A

..EXEC_SQL

...| FETCH C1 INTO :A

..END

C1 is an SQL entity;
A is a MANTIS host variable.

♦ An SQL statement appended to an EXEC_SQL statement with a
colon (the character that separates MANTIS statements) is part of
the SQL statement; it is considered to be within the EXEC_SQL-END
block.
..EXEC_SQL:| SELECT NAME

...| FROM EMPL_TABLE..

...| WHERE ZIP = '12345'...

..END

Valid

Rules for embedding SQL statements in a MANTIS program

MANTIS SUPRA SQL Programming 19

♦ In an SQL statement, multiple blanks at the beginning or end of an
SQL statement are treated as a single blank.
..EXEC_SQL

...| OPEN C1

..END

is equivalent to ..EXEC_SQL

...| OPEN C1

..END

 All spaces between words on the same or different lines are
compressed at every execution except those contained in a text
literal.
..EXEC_SQL equivalent to

...|

...| SELECT

...| COL1

...| FROM TABLE

...| WHERE

...| COL1=' ABCDEF '

..END

..EXEC_SQL

...| SELECT COL1 FROM TABLE WHERE

...| COL1=' ABCDEF '

..END

 Although multiple blanks can add to readability, they also incur
additional processing overhead. You may want to avoid using them
for this reason.

♦ An SQL statement in an EXEC_SQL-END block can be broken into
multiple lines. MANTIS SQL Support reads the text on two
consecutive comment lines in an EXEC_SQL-END block as if it were
separated by a single blank (one SQL statement).

..EXEC_SQL

...| OPEN

...| C1

..END

is equivalent to ...EXEC_SQL

...|OPEN C1

..END

Chapter 2 Embedding SQL statements in MANTIS programs

20 P39-3105-00

♦ Do not code SQL text literals on more than one line.
..EXEC_SQL

...| SELECT COL1

...| INTO :HOST_VAR

...| FROM TABLE

...| WHERE COL1='ABC

...| DEF'

..END

Invalid: An SQL text literal appears on
more than one line.

♦ A MANTIS statement on the same line as the END statement in an
EXEC_ SQL-END block is not executed. This is consistent with the
rules for using END with MANTIS IF, WHILE, WHEN, and UNTIL
statements. MANTIS comments are permitted.
..EXEC_SQL

...| OPEN C1

..END:OPENED=TRUE

..EXEC_SQL

...| OPEN C1

..END:| C1 IDENTIFIES TAG FILE ENTRIES

OPENED=TRUE
is disregarded.

A valid comment.

Accessing multiple SUPRA databases From MANTIS
SUPRA permits up to eight databases to be accessed concurrently. In
MANTIS SQL Support, you access multiple SUPRA databases by coding
the number of the database on the EXEC_SQL statement, as shown
below:
EXEC_SQL(n)

The database number (if present) must be a MANTIS expression that
evaluates to an integer value between 1–8, inclusive. If the database
number is not coded on the EXEC_SQL statement, it defaults to 1.
When SQL text is appended to the EXEC_SQL statement, it must follow
any SUPRA database number specified, as in the following example:
..EXEC_SQL(3):| SELECT . . .

..END

Coding host variables in SQL statements

MANTIS SUPRA SQL Programming 21

Coding host variables in SQL statements
Host variables are MANTIS data variables that are used to provide input
or receive output from SUPRA. Host variables are identified in SQL
statements by a colon (:) prefix. In the following example, EMPL is a host
variable:
..SMALL EMPL

..EXEC_SQL

...| FETCH CURSOR1 INTO :EMPL

..END

Host variables can be explicitly declared as BIG, SMALL, TEXT, or
KANJI. Like other MANTIS variables, undeclared host variables are
implicitly declared when they are first used. Any previously undefined
MANTIS variable referenced in an SQL statement is automatically
declared as a MANTIS BIG variable.
..BIG A

..EXEC_SQL

...| FETCH C1 INTO :A

..END

is
equivalent
to

..EXEC_SQL

...| FETCH C1 INTO :A

..END

Host variables can either be input host variables or output host variables,
depending on how they are used in the SQL statement. Input host
variables contain data that SUPRA requires to perform the SQL
statement. These are usually search condition values. EMPL2 is an
input host variable in the example below. It contains the employee
number of the specific employee to be selected.

Output host variables are variables that contain data requested from
SUPRA. They are usually found in SELECT or FETCH statements. In
the following example, EMPL1 is an output host variable since SUPRA
will place the results of the SELECT statement there:
..TEXT EMPL1(30)

..SMALL EMPL2

..EXEC SQL

...| SELECT EMPLNO, EMPLNAME

...| INTO :EMPL1

...| FROM EMPL.TABLE

...| WHERE EMPLNO = :EMPL2

..END

Chapter 2 Embedding SQL statements in MANTIS programs

22 P39-3105-00

Normally, host variables are MANTIS variables declared as BIG, SMALL,
TEXT, or KANJI. Certain MANTIS functions and complex data types
(such as SCREEN and FILE) can also be used as host variables,
depending on how they are used in the SQL statements. The following
table shows the MANTIS entities that can be used as SQL host variables.

Declared data
variables

Valid for input
host variable

Valid for output
host variable

BIG Yes Yes
SMALL Yes Yes

TEXT Yes1 Yes1
KANJI Yes1 Yes1
Immediate numeric functions:
 DATAFREE Yes No
 DOLEVEL Yes No
 E Yes No
 FALSE Yes No
 PI Yes No
 PROGFREE Yes No
 TRUE Yes No
 USERWORDS Yes No
 ZERO Yes No

1 Input host variables can include both array and substring subscripts. Output host variables can
include array subscripts but cannot include substring subscripts.

Coding host variables in SQL statements

MANTIS SUPRA SQL Programming 23

Declared data
variables

Valid for input
host variable

Valid for output
host variable

Immediate text functions:
 DATE Yes No
 KEY Yes No
 PASSWORD Yes no
 PRINTER Yes No
 TERMINAL Yes No
 TERMSIZE Yes No
 TIME Yes No
 USER Yes No
Complex data types:
ACCESS Yes2 No

FILE Yes2 No

INTERFACE Yes2 No

SCREEN Yes2 No

TOTAL Yes2 No

VIEW Yes2 No

Other
ENTRY No No
PROGRAM No No

2 These are treated as TEXT functions (status of last use).

Chapter 2 Embedding SQL statements in MANTIS programs

24 P39-3105-00

A host variable can be located in a MANTIS array. You can use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables. MANTIS syntax rules apply to subscripting, even though
the subscript is coded in an SQL statement. In the example below, all
text following the colon must conform to MANTIS syntax rules. For
example:
..SMALL N,T

..BIG EMPL(20,40)

..EXEC_SQL

...| FETCH C1 INTO :EMPL(1+N,INT(T))

..END

Only the host variable, not other MANTIS variables referred to in
subscript expressions, is prefixed with a colon. In the example above,
the variables N and T are not prefixed with a colon, but are MANTIS
variables used to calculate the subscript for the EMPL array.

Accessing host variables directly from within arrays is an extension to
SQL made for MANTIS SQL Support. It may not be available in SQL in
COBOL.

You can use host variables in SQL expressions. A colon (:) must
precede each host variable, as shown in the following example:
..EXEC_SQL

...| INSERT INTO OWNER.TAB (COL-A)

...| VALUES (:SALARY * 1.1)

..END

Coding indicator variables in SQL statements

MANTIS SUPRA SQL Programming 25

Coding indicator variables in SQL statements
Indicator variables are host variables containing information about data
being sent to or received from SUPRA. Indicator variables indicate
whether data transferred between MANTIS and SUPRA was transferred
successfully, is NULL, or was truncated. If the data was transferred
successfully, the indicator variable is zero. If the data was NULL, the
indicator variable contains a negative value. If the data was truncated,
the indicator variable contains the untruncated length of the data.

Indicator variables are optional, but if used, they must be prefixed with a
colon and immediately follow the corresponding host variable (or
subscript expression). In the following example, EMPLIV and NAMEIV
are indicator variables:
..EXEC_SQL:| SELECT EMPLNO, EMPLNA
...| INTO :EMPL(15,3):EMPLIV, :NAME:NAMEIV
...| FROM EMPLOYEES WHERE DEPT = 17
..END

Like host variables, indicator variables can be defined explicitly or
implicitly. Only SMALL and BIG variables can be used as indicator
variables. If indicator variables are declared implicitly, they will default to
MANTIS BIG.

You can also use an indicator variable to insert a NULL value into a
SUPRA table column. Storing a negative value in an indicator variable
causes SUPRA to make the value of the associated table column NULL,
regardless of the contents of the host variable. In the following example,
a NULL value is inserted for column COLA (regardless of the value of
VAR) when the INSERT statement is executed:
..VARIV=(-1)
..EXEC_SQL
...| INSERT INTO OWNER.TAB (COLA,COLB)
...| VALUES (:VAR:VARIV, :XV:XYIV)
..END

Indicator variables are normally optional. However, they are required
when an SQL table column is to be set to NULL, as shown above.

When accessing SUPRA, you may need to check the indicator variable
before using the data returned by SUPRA. If a table column is NULL, the
value of the associated host variable is not defined. The contents of the
MANTIS host variable may be unchanged or may be cleared depending
on options selected when MANTIS was installed. Check with your
system administrator for more information.

Chapter 2 Embedding SQL statements in MANTIS programs

26 P39-3105-00

Converting data between MANTIS SQL support and SUPRA
Within MANTIS SQL Support, data is always maintained in MANTIS data
types (BIG, SMALL, TEXT, KANJI). If data conversion is required, it is
performed by SUPRA. The following table lists permissible data type
conversions. Any combination of MANTIS and SQL data types not listed
in this table may result in run-time errors. Note that loss of precision,
numeric overflow, and data truncation are possible during data
conversion.

The following table shows valid data type conversions:

SQL data type MANTIS data type Notes
0 (Fixed) BIG/SMALL Loss of precision may occur when converting

from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

1 (Float) BIG/SMALL Loss of precision may occur when converting
from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

2 (Character) TEXT When converting in either direction, truncation
may occur.

3 (Byte) TEXT When converting in either direction, truncation
may occur.

4 (Date) TEXT When converting in either direction, truncation
may occur.

5 (Time) TEXT When converting in either direction, truncation
may occur.

6 (String) TEXT When converting in either direction, truncation
may occur.

10 (DBYTE) KANJI When converting in either direction, truncation
may occur.

MANTIS SUPRA SQL Programming 27

3
Programming considerations

MANTIS SQL Support allows you to execute SQL statements from a
MANTIS program. SQL statements are executed in a MANTIS program
as standard MANTIS comments, enclosed in an EXEC SQL-END block.
As MANTIS encounters each SQL statement, it prepares it for execution
and then executes it, in effect performing the same steps (preprocess,
compile, link, and execute) that are performed by programs in SQL in
COBOL that contain embedded SQL statements. However, unlike
programs in SQL in COBOL, MANTIS programs can be modified
(including the SQL statements) and then immediately re-executed.

Chapter 3 Programming considerations

28 P39-3105-00

Before you begin writing MANTIS SQL Support programs, review the
programming considerations discussed in this chapter:

♦ The scope of an SQL cursor or statement is local to a program.
Because both are SQL entities and not MANTIS entities, you cannot
pass them as parameters or use them in non-SQL MANTIS
statements (see “Scope of SQL cursors and statements” on
page 29).

♦ The WHENEVER statement in MANTIS SQL Support differs slightly
from the WHENEVER statement in other SQL in COBOL (see “SQL
WHENEVER statement” on page 30).

♦ Elements in the SQLCA (SQL Communications Area) are accessed
through a MANTIS function called SQLCA, rather than as elements
of an SQLCA data structure as in SQL in COBOL (see “SQLCA in
MANTIS SQL support” on page 35).

♦ MANTIS HPO (High Performance Option) binding is terminated by
any SQL statement or function (EXEC SQL, SQLCA, SQLDA) (see
“Binding with the high-performance option (HPO)” on page 39).

♦ The effects of the SQL COMMIT WORK and ROLLBACK WORK
statements differ slightly from the COMMIT and RESET statements
in MANTIS (see “SUPRA's COMMIT and ROLLBACK versus
MANTIS SQL support's COMMIT and RESET” on page 39).

♦ Running a program from a line number can have unpredictable
results (see “Running a program from a line number” on page 40).

♦ Error messages can come from three different sources: MANTIS
SQL Support, the MANTIS nucleus, and SUPRA (see “Error
messages” on page 41).

♦ MANTIS SQL Support does not limit the number of host variables in
an SQL statement. However, this number may be limited by SUPRA
(see “Maximum number of host variables” on page 42).

♦ Truncation of TEXT data can occur when parameters of MANTIS
ENTRY statements are used as host variables (see “Using ENTRY
statement parameters as host variables” on page 42).

♦ Certain SQL keywords cannot be used as MANTIS host variable
names (see “SQL keywords” on page 79).

Scope of SQL cursors and statements

MANTIS SUPRA SQL Programming 29

Scope of SQL cursors and statements
The scope of SQL cursors and statements is local to the program and
do-level where they are defined. SQL cursors and statements are global
entities to SUPRA. However, attempting to use SQL cursors and
statements outside of the program or do-level where they are defined in
MANTIS SQL Support can cause problems.

MANTIS SQL Support maintains all SQL-related resources by the
MANTIS program or do-level. A MANTIS program or do-level cannot
access the SQL resources of another program or do-level. If SQL
resources are defined in a program and used in another program or do-
level, MANTIS SQL Support may not be able to access the SQL
statement.

For example, if an SQL DECLARE statement is coded in a MANTIS
program or do-level and the associated OPEN for the DECLARE is
coded in another program or do-level, MANTIS SQL Support may not be
able to execute the OPEN statement in all circumstances because the
OPEN statement must have access to the DECLARE statement text.
SUPRA can discard SQL statements based on certain time limits. If a
discarded SQL statement is executed, SUPRA returns an error code
indicating that the SQL statement is invalid and must be prepared again
(parsed) for execution. If this occurs on the OPEN statement, there is
no way to access the DECLARE statement text to prepare it again for
execution.

Chapter 3 Programming considerations

30 P39-3105-00

SQL WHENEVER statement
The WHENEVER statement in MANTIS SQL Support differs from the
WHENEVER statement in SQL in COBOL in four ways. In MANTIS SQL
Support:

♦ The WHENEVER statement is interpretive, not compiled.

♦ GOTO is replaced by DO.

♦ STOP is replaced by FAULT.

♦ The default action for SQLERROR is FAULT, not CONTINUE.

The syntax of the MANTIS SQL Support WHENEVER statement is
shown below. Note that any action (DO, FAULT, or CONTINUE) can be
selected for any condition (SQLERROR, SQLEXCEPTION,
SQLWARNING, NOT FOUND).

If you do not code the WHENEVER statement, the conditions will default
to the actions specified in the considerations below. If you do code the
WHENEVER statement, you must code both condition and action.

SQL WHENEVER statement

MANTIS SUPRA SQL Programming 31

WHENEVER condition action

condition

Description Required. Indicates the condition you want to check for.

Options SQLERROR, SQLEXCEPTION, SQLWARNING, and NOT FOUND

SQLERROR

Description Optional. Specifies that SUPRA detected an error. The
SQL statement execution was not successful, and the
SQLCA SQLCODE contains a negative value.

Consideration If you do not specify a WHENEVER SQLERROR, the
default action is FAULT.

SQLEXCEPTION

Description Optional. Indicates SQL timeout error conditions;
SQLCODE>100. Timeouts can be configured for locks
and access to SUPRA.

Consideration If you do not specify a WHENEVER SQLEXCEPTION,
the default action is CONTINUE.

SQLWARNING

Description Optional. Specifies that SUPRA detected a condition
that may require program intervention. The SQL
statement execution was successful. The SQLCA
SQLCODE may contain a positive value less than 100
and/or one or more of the SQLCA SQLWARN flags may
contain nonblank characters.

Consideration If you do not specify a WHENEVER SQLWARNING, the
default action is CONTINUE.

NOT FOUND

Description Optional. Specifies that SUPRA cannot find a row to
satisfy your SQL statement, or there are no more rows to
be retrieved. The SQLCA SQLCODE contains 100.

Consideration If you do not specify a WHENEVER NOT FOUND, the
default action is CONTINUE.

Chapter 3 Programming considerations

32 P39-3105-00

action

Description Required. Specifies the action to be taken when the named condition is
met.

Options DO entry-name[(parms)], FAULT, and CONTINUE.

DO

Description Optional. Specifies a standard MANTIS DO (internal or
external) and corresponds to the WHENEVER-GOTO
SQL statement in SQL in COBOL. WHENEVER-DO
transfers control to the specified internal routine or
external program whenever the named condition is
encountered.

Considerations

♦ WHENEVER-DO can transfer control to an internal
routine or external program, which in turn can
contain any MANTIS logic, including CHAIN, EXIT,
or STOP statements. The current values of any DO
arguments are passed to the named subroutine or
external program. The subroutine or external
program EXIT returns control to the next statement
following the EXEC_SQL that caused the DO to
occur.

♦ The WHENEVER-DO action resembles the existing
functionality of the TRAP statement in MANTIS. If
the DO portion of a WHENEVER-DO contains an
error, MANTIS returns a MANTIS error message
associated with the DO statement, not an SQL
WHENEVER-type error. MANTIS displays the line
in error in the subroutine or external program. The
WHENEVER statement may be outside of the
current execution path. Remember that DO is
executed as a result of an SQL statement detecting
the condition with which the DO action is associated.

SQL WHENEVER statement

MANTIS SUPRA SQL Programming 33

FAULT

Description Optional. Terminates execution of the program and
displays the error message returned by SUPRA in the
form of a MANTIS fault message. FAULT corresponds
to the WHENEVER-STOP SQL statement in SQL in
COBOL.

CONTINUE

Description Optional. Permits program execution to continue
without interruption when the named condition occurs.
Program execution continues with the statement
following the EXEC SQL statement in the MANTIS
program. Your program should then check the SQLCA
SQLCODE for the results of each SQL statement
execution.

 The following table shows the default action for each condition when the
WHENEVER statement is not coded:

Condition Default action
SQLERROR FAULT
SQLEXCEPTION CONTINUE
SQLWARNING CONTINUE
NOT FOUND CONTINUE

Example

00230 EXEC_SQL

00240 | WHENEVER SQLERROR

00250 | DO ERROR_ROUTINE(PARM1,PARM2,PARM3)

00260 END

00270 EXEC_SQL: | WHENEVER SQLEXCEPTION FAULT

00280 END

Chapter 3 Programming considerations

34 P39-3105-00

Using SQL WHENEVER as a declarative statement
In SQL in COBOL, the SQL WHENEVER statement is a declarative
statement. It is processed when the program is precompiled, not when it
is executed. Consequently, in SQL in COBOL the current SQL
WHENEVER setting is determined by its sequential position in the
program.

In MANTIS SQL Support, the WHENEVER statement is an executable
statement. The last-executed WHENEVER statement is in effect
regardless of its sequential position in the program. This difference is
important when a WHENEVER statement is used with MANTIS
conditional statements. The following figure illustrates the different
effects of a declared versus executed WHENEVER statement. “C”
denotes a condition and “1” and “2” denote actions. The same
considerations apply to UNTIL, WHEN, and IF structures in MANTIS.

Setting
in effect

SQL in COBOL
pseudocode

M ANTIS SQL Support
pseudocode

Setting
in effect

20 WHENEVER C1 C1
... |

40 WHILE condition C1
50 WHENEVER C2 C2

... C2
70 ENDHWILE C2
80 EXEC_SQL C2

20 WHENEVER C1 C1
... |

40 WHILE condition C1 FIRST, THEN C2*
50 WHENEVER C2
60 |EXEC_SQL ... C2
70 END
80 |EXEC_SQL ... C1 or C2*

Since the setting is established
before run tim e, it rem ains
unchanged regardless of whether
lines 50-70 are executed.

The first tim e statem ent 40 is executed,
the setting is C1; thereafter, it is C2.

*How ever, if the W HILE condition is not true the
first time line 40 is executed, C1 rem ains in effect
through line 80 because line 50 w as not
executed.

Scope of the WHENEVER statement
The scope (range) of the WHENEVER statement is every EXEC SQL
statement in the current MANTIS DO-level until a new WHENEVER
statement is executed. To change the default WHENEVER settings,
explicitly execute the WHENEVER statement in every external
subprogram.

SQLCA in MANTIS SQL support

MANTIS SUPRA SQL Programming 35

SQLCA in MANTIS SQL support
In SQL in COBOL, the SQLCA (SQL Communications Area) is a data
structure. SQL in COBOL accesses elements in the SQLCA as items of
data. In MANTIS SQL Support, these elements are accessed through
the SQLCA function. The SQLCA function and statement perform the
complementary operations of moving data to and from elements of the
SQLCA structure. All standard SQLCA capabilities are provided as with
SQL in COBOL.

The SQLCA statement stores data from the MANTIS program into the
SQLCA. SQLCA is both a statement and a function. The SQLCA
statement stores data from the MANTIS program into the SQL
Communication Area (SQLCA). The SQLCA built-in function (read)
transfers data from the SQLCA to the MANTIS program. For more
detailed information, refer to MANTIS Language, OS/390, VSE/ESA,
P39-5002.

The SQLCA statement is shown below followed by the SQLCA function.
The SQLCA statement stores data from the MANTIS program into the
SQL Communication Area (SQLCA).

SQLCA(sqlca_element_name)=expression

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to be transferred.

Format Must be a text literal or expression that evaluates to one of the SQLCA
element names in the following tables.

expression

Description Required. Specifies the data to be transferred into the SQLCA.

Format Must be consistent with the datatype of the SQLCA element, text or
numeric.

Consideration Certain SQLCA elements are read-only and cannot have data stored into
them by the MANTIS program.

Chapter 3 Programming considerations

36 P39-3105-00

General considerations

♦ Some SQLCA elements are not present in the SQL SQLCA. These are
extensions to the SQLCA unique to MANTIS. They are: DBTYPE and
DBNAME. DBTYPE returns “SUPRA” to the MANTIS program.
DBNAME is used to retrieve or set the SUPRA database value.

♦ Although data can be stored in some SQLCA elements, doing so does
not pass any information to the SQL database. The SQLCA is returned
to the MANTIS program after each SQL statement is executed
(EXEC_SQL-END). Any data stored in the SQLCA will be overwritten
when the next SQL statement is executed.

Example This example shows how a MANTIS program can retrieve SQL error
message text for an SQLCA error message. The SQLCA statement is
used to store the SQLCODE value in the SQLCA.
00150 TEXT SQL_ERROR_TEXT(254)

00160 SQLCA("SQLCODE")=-504

00170 SQL_ERROR_TEXT=SQLCA("SQLERRMC")

00180 END

SQLCA in MANTIS SQL support

MANTIS SUPRA SQL Programming 37

The SQLCA built-in function, shown below, transfers data from the SQL
Communication Area (SQLCA) into the MANTIS program.

SQLCA(sqlca_element_name)

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to be transferred.

Format Must be a text literal or expression that evaluates to one of the SQLCA
element names in the following tables.

General considerations

♦ Some SQLCA elements are not present in the SQL SQLCA. These are
extensions to the SQLCA unique to MANTIS. They are DBTYPE and
DBNAME. DBTYPE returns “SUPRA” to the MANTIS program.
DBNAME returns the name of the SUPRA database currently in use.

♦ If an SQLCA TEXT element is moved to a MANTIS variable of shorter
length (for example, an 8-character SQLCA element to a 6-character
MANTIS variable), the right-most characters are truncated.

Chapter 3 Programming considerations

38 P39-3105-00

Example This example shows how data is retrieved from the SQLCA by the
SQLCA built-in function. Line 160 checks the SQLCA SQLCODE to
determine if all table rows have been fetched.
00130 EXEC_SQL

00140 . | FETCH C1 INTO :EMPL_NAME, :EMPL_NUMBER

00150 END

00160 IF SQLCA("SQLCODE")=100

00170 .DO END_OF_DATA

00180 END

Element
name

MANTIS
compatible
data type

Contents / considerations

Updateable?

SQLCAID TEXT(8) Eyecatcher. Set by SQL No
SQLCABC BIG Length of SQLCA. Set by SQL. No
SQLCODE BIG Code indicating results of SQL

statement execution.
Yes

SQLERRML BIG Length of SQL error message text. No
SQLERRMC TEXT(70) SQL error message text. Yes
SQLERRP TEXT(8) SQL diagnostic data. Yes
SQLERRDn BIG SQL diagnostic data. n ranges from 1–6. Yes
SQLWARNn TEXT(1) SQL warning flags. n ranges from 0–F. Yes
DBTYPE* TEXT(6) Returns SQL database in use. No
DBNAME* TEXT(64) Returns or sets SUPRA database name. Yes

* This element is a MANTIS extension to the SQLCA. It is not present in the SQL SQLCA.

Binding with the high-performance option (HPO)

MANTIS SUPRA SQL Programming 39

Binding with the high-performance option (HPO)
You can HPO bind MANTIS SQL Support programs using the standard
MANTIS BIND command. The binding process stops when EXEC_SQL,
SQLCA, or SQLDA are encountered; they are not bindable statements.
The SQLCA function is discussed in “SQLCA in MANTIS SQL support”
on page 35; the SQLDA function in “Dynamic SQL statements” on
page 45. Finding (part of the MANTIS High-Performance Option) is
discussed in the MANTIS Program Design and Editing, OS/390,
VSE/ESA, P39-5013.

SUPRA's COMMIT and ROLLBACK versus MANTIS SQL
support's COMMIT and RESET

In MANTIS SQL Support, using an SQL COMMIT or ROLLBACK does
not imply a MANTIS COMMIT or RESET, but using a MANTIS COMMIT
or RESET does imply an SQL COMMIT or ROLLBACK. Executing an
SQL COMMIT statement only affects SUPRA and not MANTIS
resources. An SQL COMMIT or ROLLBACK only affects the SUPRA
database that is currently accessed. A MANTIS COMMIT or RESET
affects all SUPRA databases.

MANTIS COMMIT and RESET statements, whether implicit (at terminal
I/O) or explicit (coded in the MANTIS program) only execute an SQL
COMMIT or RESET for SUPRA databases that were updated during the
current Logical Unit of Work (LUW). If no updates were done, no
COMMIT or RESET is executed. This avoids unnecessary database
activity and allows you to use the KEEP LOCK option of the SQL
COMMIT WORK statement to maintain SUPRA locks from one LUW to
another.

Because MANTIS SQL Support does not execute an SQL COMMIT, if no
updates are done, SUPRA read locks may not be freed at terminal I/O.
You may need to include a COMMIT statement in your program to free
these locks.

For more information on the KEEP LOCK option of the SQL COMMIT
WORK statement, refer to the SUPRA DRDM Application Programmer’s
Guide, P26-2455, and the SUPRA DRDM SQL Commands Reference
Manual, P26-2420.

Chapter 3 Programming considerations

40 P39-3105-00

Running a program from a line number
In MANTIS SQL Support you can run programs from a line number.
However, this action can produce unpredictable results when the
program contains SQL statements. Some SQL statements (such as
FETCH) require that other SQL statements (such as DECLARE and
OPEN) be previously executed. Running a program from a line number
can cause errors because SQL statements have not been executed in
the proper sequence. Also, SQL entities (cursors) can be affected by the
MANTIS program display when running in MANTIS programming mode
(the screen display causes a terminal I/O COMMIT, which causes an
SQL COMMIT WORK, which can cause all SQL cursors to be closed).

Error messages

MANTIS SUPRA SQL Programming 41

Error messages
When using MANTIS SQL Support, you can receive messages from
three sources:

♦ MANTIS nucleus

♦ MANTIS SQL Support

♦ SUPRA

Messages from the MANTIS nucleus and SQL support are documented
in MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004.
Messages from SUPRA are documented in the appropriate SQL
manuals.

MANTIS SQL Support messages have a seven-character code like other
MANTIS error messages. All MANTIS SQL error codes contain the letter
“Q” in the fourth position, as shown in the example below:
NUCQFKE: SPECIFIED SQL HOST VARIABLE ELEMENT IS UNINITIALIZED

The way MANTIS SQL Support messages are displayed depends on
whether the error was detected in the MANTIS Full Screen Editor, the
MANTIS Line Editor, or a MANTIS program.

♦ In the MANTIS Full Screen Editor. If the message is too long to be
displayed in full on the Message Line at the top of the screen, the
message is displayed in a separate window at the bottom of the
screen.

♦ In the MANTIS Line Editor. The MANTIS statement where the error
was encountered is displayed at the bottom of the edit screen,
followed by the error code and message. If the message is too long
to fit on one line, the remaining text is not displayed.

♦ In a MANTIS program. The message appears at the bottom of the
screen. It wraps to succeeding lines if necessary. The number of
the statement causing the error and the MANTIS program name
appear beneath the error message.

Chapter 3 Programming considerations

42 P39-3105-00

Messages from SUPRA contain the 3-character code QDB. A message
from SUPRA contains the SQLCA SQLCODE value and its associated
text message. The format is:
NUCQDBE:+nnnn:message-text

where +nnnn is the SQLCA SQLCODE value and message-text is the
message returned from SUPRA. For example:
NUCQDBE:-3008:INVALID KEYWORD OR MISSING DELIMITER

is returned from SUPRA if an SQLCODE of -3008 is returned to the
SQLCA and the WHENEVER SQLERROR condition was set to FAULT.

Maximum number of host variables
The number of host variables that can be defined in a MANTIS program
is limited only by SUPRA. MANTIS SQL Support does not limit the
number of host variables that can be defined in a MANTIS program, other
than the 2048 limit of symbolic names in a single MANTIS program..

Using ENTRY statement parameters as host variables
If ENTRY statement parameters are used as host variables in SQL
statements in a MANTIS program, be certain that the lengths of any
TEXT parameters passed do not change from one invocation to the next.

MANTIS SQL Support will use and maintain the length received on the
first execution. If a TEXT parameter of a different length is used on a
subsequent execution, the new length will be ignored. If the new length is
larger than the existing length, MANTIS will continue to return the existing
length, in effect truncating the data.

The following example shows ENTRY parameters used as host
variables. In this case, MANTIS SQL Support will use and maintain the
lengths of the EMPL_NAME and EMPL_NUMBER TEXT parameters
received on the first execution, possibly resulting in TEXT parameter data
truncation:
10120 ENTRY GET_NAME(EMPL_NAME,EMPL_NUMBER)

10130 .EXEC_SQL

10140 ..| FETCH C1 INTO :EMPL_NAME, :EMPL_NUMBER

10150 .END

10160 EXIT

Using ENTRY statement parameters as host variables

MANTIS SUPRA SQL Programming 43

To avoid the possibility of TEXT parameter data truncation, perform the
following:

1. Move variables passed as ENTRY statement parameters to variables
explicitly defined within the MANTIS program or subroutine.

2. Use the explicitly defined variables or host variables in the SQL
statements, as shown below:

The following example shows host variables explicitly defined within the
MANTIS subroutine. In this case, MANTIS SQL Support will always use
TEXT variables of 30 and 12 characters, regardless of the size of the
input parameters (EMPL_NAME, EMPL_NUMBER).
10110 ENTRY GET_NAME(EMPL_NAME,EMPL_NUMBER)

10120 .TEXT NAME(30),NUMBER(12):| define as maximal size

10130 .EXEC_SQL

10140 ..| FETCH C1 INTO :NAME, :NUMBER

10150 .END

10160 .EMPL_NAME=NAME

10170 .EMPL_NUMBER=NUMBER

10170 EXIT

Chapter 3 Programming considerations

44 P39-3105-00

MANTIS SUPRA SQL Programming 45

4
Dynamic SQL statements

Using dynamic SQL statements in MANTIS SQL Support is somewhat
different than using dynamic SQL statements in SQL in COBOL. If you
are unfamiliar with dynamic SQL statements, you may want to review the
appropriate SUPRA manuals for more information before reading this
chapter.

Static and dynamic are the two basic types of SQL statements. You can
use static SQL statements when you know all the information needed to
execute the SQL statement before executing it. SQL SELECT, FETCH,
UPDATE, INSERT, and DELETE are examples of static SQL statements.
Use dynamic SQL statements when you do not know all the necessary
information about an SQL statement before executing it. For example, if
a query application allows a user to enter an SQL statement from an
online terminal, the query program requires dynamic SQL statements.
The SUPRA ISQL utility program is an example of such an application.

Dynamic SQL statements allow you to execute other SQL statements
under control of the application program. PREPARE, DESCRIBE,
EXECUTE, and EXECUTE IMMEDIATE are examples of dynamic SQL
statements. Alternate forms of the DECLARE, OPEN, and FETCH
statements can also be used with dynamic SQL statements.

You can use both static and dynamic SQL statements in the same
MANTIS program. You cannot use host variables in SQL statements that
are executed by dynamic SQL statements. A parameter marker (usually
the question mark character (?)) must replace all host variables in the
SQL statement text. Data is transferred between MANTIS and SUPRA
using an SQLDA (SQL Descriptor Area). When using dynamic SQL
statements, you must procedurally place host variable data into or
retrieve data returned by SUPRA from an SQLDA.

Chapter 4 Dynamic SQL statements

46 P39-3105-00

To execute SQL statements using dynamic SQL, you must prepare the
SQL statements with an SQL PREPARE statement and then execute
them with an SQL EXECUTE statement. If data is retrieved, inserted, or
updated in SUPRA, your program must manipulate an SQLDA between
SQL statement preparation and execution. This manipulation can include
allocating and expanding an SQLDA, retrieving data type and length
information from SUPRA using the DESCRIBE statement, and
transferring data between MANTIS variables and an SQLDA. Appendix
A shows examples of MANTIS programs using static SQL statements
and equivalent programs using dynamic SQL statements.

SQLDA statement and function

MANTIS SUPRA SQL Programming 47

SQLDA statement and function
An SQLDA (SQL Descriptor Area) is a data structure that is used to
transfer data between your program and the SUPRA when dynamic SQL
statements are used. The following figure shows the structure of an
SQLDA:

SQLCOLMODE1

SQLCOLIO1

SQLDAID

SQLMAX

SQLD

SQLN

SQLCOLTYPE1

SQLCOLFRAC1

SQLCOLLENGTH1

SQLHOSTIND1

SQLHOSTVARTY1

SQLHOSTVAR1

SQLCOLNAME2

SQLCOLIO2

SQLCOLMODE2

SQLCOLTYPE2

SQLCOLLENGTH2

SQLCOLFRAC2

SQLHOSTIND2

SQLHOSTVARTY2

SQLHOSTVAR2

header
elements

SQLCOLNAME1

repeating
element1

repeating
element2

Chapter 4 Dynamic SQL statements

48 P39-3105-00

An SQLDA is composed of two types of elements: header elements
(which occur once per SQLDA) and repeating elements (which can occur
multiple times in an SQLDA). Repeating elements repeat as a group
(each element occurs only once in a group). This repeating group is
called an SQLVAR. Each element in the SQLDA has a specific name
and contains a specific item of data. These items are explained in the
SUPRA documentation.

In SQL in COBOL, you must explicitly declare each SQLDA element as a
data area in your program and then access SQLDA elements through
programming statements. In MANTIS SQL Support, you access the
SQLDA by using the SQLDA statement and function. In MANTIS SQL
Support, when you declare an SQLDA, an SQLDA with all the elements
shown in the preceding figure is built for you. The SQLDA contains a
default number of repeating elements (SQLVAR). Although your system
administrator sets this default, you can modify this number in your
program.

SQLDA is both a statement and a function. The SQLDA statement
(write) stores data from the MANTIS program into the SQL Descriptor
Area (SQLDA). The SQLDA function (read) transfers data from the
SQLDA into the MANTIS program. For more detailed information, refer
to MANTIS Language, OS/390, VSE/ESA, P39-5002.

The SQLDA statements are shown below followed by the SQLDA
function. The SQLDA statement is used to allocate or deallocate an
SQLDA, and to transfer data from a MANTIS program into an SQLDA.

SQLDA statement and function

MANTIS SUPRA SQL Programming 49

Allocate an SQLDA

SQLDA(sqlda_name)=NEW

sqlda_name

Description Required. Specifies the name of the SQLDA to be allocated.

Format Must be a text literal or expression of 1–18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for SUPRA.

Example The following example shows how to allocate an SQLDA. Line 150
allocates an SQLDA named the “SQLDA1”.
00100 TEXT SQL_TEXT(254)
00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)
00120 BIG EMPL_ZIP_CODE
00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"
00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"
00150 SQLDA("SQLDA1")=NEW
00160 IF SQLDA("SQLDA1","SQLMAX")<4
00170 .SQLDA("SQLDA1","SQLMAX")=4
00180 END
00190 SQLDA("SQLDA1","SQLN")=4
00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT
00210 END
00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1
00230 END
00240 EXEC_SQL:| OPEN C1
00250 END
00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'
00270 END
00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1
00290 END
00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1
00310 END
00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)
00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)
00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)
00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)
00360 SQLDA("SQLDA1")=QUIT

Chapter 4 Dynamic SQL statements

50 P39-3105-00

Deallocate an SQLDA SQLDA(sqlda_name)=QUIT

SQLDA(sqlda_name) = QUIT

sqlda_name

Description Required. Specifies the name of the SQLDA to be deallocated.

Format Must be a text literal or expression of 1–18 characters.

Considerations
♦ Naming conventions for SQL entities must be followed. Refer to the

appropriate SQL language manual for SUPRA.

♦ Must be a previously defined SQLDA, via SQLDA(sqldaname) = NEW.

Example The following example shows how to deallocate an SQLDA. Line 360
deallocates an SQLDA named “SQLDA1”.
00100 TEXT SQL_TEXT(254)
00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)
00120 BIG EMPL_ZIP_CODE
00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"
00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"
00150 SQLDA("SQLDA1")=NEW
00160 IF SQLDA("SQLDA1","SQLMAX")<4
00170 .SQLDA("SQLDA1","SQLMAX")=4
00180 END
00190 SQLDA("SQLDA1","SQLN")=4
00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT
00210 END
00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1
00230 END
00240 EXEC_SQL:| OPEN C1
00250 END
00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'
00270 END
00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1
00290 END
00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1
00310 END
00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)
00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)
00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)
00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)
00360 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS SUPRA SQL Programming 51

Set SQLDA header information

SQLDA(sqlda_name,sqlda_header_element)=expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1–18 characters.

Considerations

♦ Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for SUPRA.

♦ Must be a previously defined SQLDA, via SQLDA(sqldaname) = NEW.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format Must be a text literal or an expression that evaluates to one of the
SQLDA header element names shown in the table following the next
parameter description.

expression

Description Required. Specifies the data to be transferred from the MANTIS program
into the SQLDA.

Format Must be consistent with the datatype of the SQLDA element being stored
(either text or numeric).

Consideration Certain SQLDA elements are read-only and cannot have data from the
MANTIS program stored in them. In some cases, storing data in one
SQLDA element causes MANTIS to automatically update other SQLDA
elements.

Chapter 4 Dynamic SQL statements

52 P39-3105-00

Example In the following example, SQLDA header elements are set in lines 250
and 270.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLMAX")<5

00250 .SQLDA("SQLDA1","SQLMAX")=5

00260 END

00270 SQLDA("SQLDA1","SQLN")=5

00280 SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLHOSTVAR",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLHOSTVAR",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLHOSTVAR",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLHOSTVAR",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS SUPRA SQL Programming 53

The following table lists and describes the SQLDA header elements:

Element
name

MANTIS
compatible
data type

How set / when used

Updateable?

SQLDAID TEXT(8) Eyecatcher. Set by SUPRA. No
SQLMAX BIG Number of repeating groups (SQLVAR) in

the SQLDA. Set using installation defined
default value when the SQLDA is allocated.
Can be modified by the MANTIS program if
needed.

Yes

SQLN BIG Total number of repeating groups in use in
the SQLDA. Set as a result of a
DESCRIBE to the total number of host
variable parameters in the statement
(except for DESCRIBE in FETCH USING
DESCRIPTOR where SQLN is set to the
number of result table columns).

Yes

SQLD BIG Total number of output host variables in the
SQLDA. Set as a result of a DESCRIBE to
the number of host variables (except for
DESCRIBE in FETCH USING
DESCRIPTOR where SQLD is set to the
number of result table columns).

Yes

Chapter 4 Dynamic SQL statements

54 P39-3105-00

Move data into an SQLDA repeating group

SQLDA(sqlda_name,repeating_element,index)=expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1–18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for SUPRA.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format Must be a text literal or expression that evaluates to one of the SQLDA
repeating element names shown in the table at the end of this section.

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format Must be a numeric literal or expression not less than one and not greater
than the maximum number of repeating groups currently in the SQLDA
(SQLMAX), inclusive.

SQLDA statement and function

MANTIS SUPRA SQL Programming 55

General consideration

 Using certain SQLDA elements causes other SQLDA elements to
automatically be set by MANTIS SQL Support. For example, storing data
into the SQLDA element “SQLHOSTVAR” causes MANTIS to set the
datatype (“SQLHOSTVARTY”) and data length (“SQLCOLLEN”)
elements automatically.

Example In the following example, lines 280–320 store data from the MANTIS
program into SQLDA repeating group elements.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLMAX")<5

00250 .SQLDA("SQLDA1","SQLMAX")=5

00260 END

00270 SQLDA("SQLDA1","SQLN")=5

00280 SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLHOSTVAR",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLHOSTVAR",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLHOSTVAR",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLHOSTVAR",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

Chapter 4 Dynamic SQL statements

56 P39-3105-00

Element name

MANTIS
compatible
data type

Contents / considerations

Updateable?

SQLCOLNAME TEXT(18) SQL column name. Set by SUPRA as
the result of a DESCRIBE; can be set
by the MANTIS program.

Yes

SQLCOLIO BIG Indicates whether host variable is input
or output. Set by SUPRA as the result
of a DESCRIBE.

No

SQLCOLMODE BIG Indicates whether NULL values are
allowed. Set as a result of a
DESCRIBE.

No

SQLCOLTYPE BIG Data type as it resides on the
database. Set by SUPRA as a result
of a DESCRIBE.

No

SQLCOLLENGTH BIG Total number of bytes used to store
the data. Set by SUPRA as the result
of a DESCRIBE, or by MANTIS when
data is transferred by SQLHOSTVAR.

No

SQLCOLFRAC BIG Number of decimal positions for FIXED
column types. Set by SUPRA as the
result of a DESCRIBE. Not used by
MANTIS because all numeric data is
floating point.

No

SQLHOSTIND BIG Contains the value of the indicator
variable. Used to indicate the
presence of NULL variables and
truncated data. Set by SUPRA during
SQL function; can be set by the
MANTIS program.

Yes

SQLHOSTVARTY BIG Contains the datatype of the data in
the SQLDA. Set by MANTIS when
SQLHOSTVAR is used.

No

SQLHOSTVAR TEXT
BIG
KANJI

Subfunction that physically transfers
data between MANTIS data areas and
the SQLDA data areas. Used to
transfer value of variable between
SUPRA and MANTIS.

Yes

SQLDA statement and function

MANTIS SUPRA SQL Programming 57

Read header elements

SQLDA(sqlda_name,sqlda_header_element)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1–18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for SUPRA.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format Must be a text literal or an expression that evaluates to one of the
SQLDA header element names shown in the table at the end of the
section titled “Set SQLDA header information” which begins on page 51.

Chapter 4 Dynamic SQL statements

58 P39-3105-00

Example In the following example, line 160 shows the SQLDA “SQLMAX” header
element being read from the SQLDA.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS SUPRA SQL Programming 59

Move data from an SQLDA repeating group into a MANTIS program

SQLDA(sqlda_name,sqlda_repeating_element,index)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1–18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for SUPRA.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format Must be a text literal or expression that evaluates to one of the SQLDA
repeating element names. See the table at the end of the section titled
“Move data into an SQLDA repeating group” which begins on page 54.

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format Must be a numeric literal or expression between one and the maximum
number of repeating groups currently in the SQLDA (SQLMAX), inclusive.

Chapter 4 Dynamic SQL statements

60 P39-3105-00

Example In the following example, lines 320–350 show SQLDA repeating elements
being moved from the SQLDA into the MANTIS program.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

SQL statements larger than 254 characters

MANTIS SUPRA SQL Programming 61

SQL statements larger than 254 characters
To dynamically prepare an SQL statement for execution, use the SQL
PREPARE statement. The SQL statement to be executed is contained
either in the PREPARE statement as a text literal, or in the host variable
specified in the PREPARE statement.

Because the SQL statement is text, the host variable specified in the
PREPARE statement must be a MANTIS TEXT variable. MANTIS TEXT
variables are limited to 254 characters, which can cause a problem for
large SQL statements.

MANTIS SQL Support allows large SQL statements to be placed in a
MANTIS TEXT array. MANTIS SQL Support combines the contents of all
rows in a MANTIS TEXT array into a single SQL statement. This
combined text is then used as the SQL statement text in the SQL
PREPARE statement.

In order to use this feature, the host variable specified in the PREPARE
statement:

♦ Must be declared as a MANTIS TEXT array.

♦ Must not have subscripts specified. If subscripts are present,
MANTIS uses only the text of the subscripted row as the SQL
statement.

When these conditions are met, MANTIS uses the contents of the entire
array as the SQL statement text. The text is combined “as is” from all
rows in the array. No characters are added or deleted so that SQL text
may split row boundaries if required. Rows containing no data are
ignored.

Because ALL rows of the array are combined, some rows may need to
be cleared from one SQL statement execution to another. If they are not
cleared, an SQL statement may be combined with text remaining from a
previous SQL statement. Executing this statement may cause errors that
are difficult to diagnose.

Chapter 4 Dynamic SQL statements

62 P39-3105-00

An example of how to use a MANTIS TEXT array to contain a large SQL
statement is shown below:
40 ..TEXT SQL_TEXT(10,20) Array can be any

length/number.
50 ..SQL_TEXT(1)="SELECT EMPLNO, EMPLN"

60 ..SQL_TEXT(2)="M"

70 ..SQL_TEXT(5)="FROM EMPLOYEE.TABLE"

80 ..SQL_TEXT(6)="WHERE EMPLNO= ?"

Text can split array
boundaries.

Rows 3 & 4
ignored-contains no
data.
No spaces are
added or deleted.

90 ..EXEC_SQL

100 ...| PREPARE S1 FROM :SQL_TEXT

110 ..END

No subscripts
specified.

The SQL text used by the SQL PREPARE statement in this example is:
SELECT EMPLNO, EMPLNM FROM EMPLOYEE.TABLE WHERE EMPLNO= ?

MANTIS SUPRA SQL Programming 63

A
Sample MANTIS SQL support
programs

This appendix contains the following sample MANTIS SQL Support
programs:

♦ Insert program using static SQL statements

♦ Insert program using dynamic SQL statements

♦ Update program using static SQL statements

♦ Update program using dynamic SQL statements

♦ Select program using static SQL statements

♦ Select program using dynamic SQL statements

♦ Delete program using static SQL statements

♦ Delete program using dynamic SQL statements

♦ Column select program using dynamic SQL statements

Each example program using dynamic SQL statements is equivalent to
the corresponding program using static SQL statements. For clarity, the
examples do not contain error checking or display logic, and the
information to be transferred to the database is coded in the programs as
literals.

Appendix A Sample MANTIS SQL support programs

64 P39-3105-00

Insert program using static SQL statements
This program inserts one employee into an employee table using static
SQL statements.

10 ENTRY STATIC_INSERT
20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL
30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)
.40 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)
50 .|
60 .EMPLOYEE_NUMBER="000120"
70 .FIRST_NAME="SEAN"
80 .MIDDLE_INITIAL=" "
90 .LAST_NAME="O'CONNELL"
100 .BIRTH_DATE=421018
110 .HIRE_DATE=631205
120 .JOB_CODE=58
130 .EDUCATION_LEVEL=14
140 .SALARY=29250
150 .PHONE_NUMBER="2167"
160 .WORK_DEPARTMENT="A00"
170 .SEX="M"
180 .|
190 .EXEC_SQL:| INSERT INTO DSN82.TEMPL
200 ..| (EMPNO,
210 ..| FIRSTNME,
220 ..| MIDINIT,
230 ..| LASTNAME,
240 ..| BRTHDATE,
250 ..| HIREDATE,
260 ..| JOBCODE,
270 ..| EDUCLVL,
280 ..| SALARY,
290 ..| PHONENO,
300 ..| WORKDEPT,
310 ..| SEX)
320 ..| VALUES (:EMPLOYEE_NUMBER,
330 ..| :FIRST_NAME,
340 ..| :MIDDLE_INITIAL,
350 ..| :LAST_NAME,
360 ..| :BIRTH_DATE,
370 ..| :HIRE_DATE,
380 ..| :JOB_CODE,
390 ..| :EDUCATION_LEVEL,
400 ..| :SALARY,
410 ..| :PHONE_NUMBER,
420 ..| :WORK_DEPARTMENT,
430 ..| :SEX)
440 .END
450 EXIT

Insert program using dynamic SQL statements

MANTIS SUPRA SQL Programming 65

Insert program using dynamic SQL statements
This program inserts one employee into an employee table using
dynamic SQL statements.

10 ENTRY DYNAMIC_INSERT
20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL
30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)
40 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)
50 .TEXT SQL_TEXT(254)
60 .|
70 .EMPLOYEE_NUMBER="000120"
80 .FIRST_NAME="SEAN"
90 .MIDDLE_INITIAL=" "
100 .LAST_NAME="O'CONNELL"
110 .BIRTH_DATE=421018
120 .HIRE_DATE=631205
130 .JOB_CODE=58
140 .EDUCATION_LEVEL=14
150 .SALARY=29250
160 .PHONE_NUMBER="2167"
170 .WORK_DEPARTMENT="A00"
180 .SEX="M"
190 .|
200 .SQL_TEXT="INSERT INTO DSN82.TEMPL "
210 .'"(EMPNO, FIRSTNME, MIDINIT, LASTNAME, BRTHDATE, "
220 .'"HIREDATE, JOBCODE, EDUCLVL, SALARY, PHONENO, "
230 .'"WORKDEPT, SEX) "
240 .'"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"
250 .|
260 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT
270 .END
280 .|
290 .SQLDA("SQLDA1")=NEW
300 .SQLDA("SQLDA1","SQLMAX")=12
310 .SQLDA("SQLDA1","SQLN")=12
320 .SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPLOYEE_NUMBER
330 .SQLDA("SQLDA1","SQLHOSTVAR",2)=FIRST_NAME
340 .SQLDA("SQLDA1","SQLHOSTVAR",3)=MIDDLE_INITIAL
350 .SQLDA("SQLDA1","SQLHOSTVAR",4)=LAST_NAME
360 .SQLDA("SQLDA1","SQLHOSTVAR",5)=BIRTH_DATE
370 .SQLDA("SQLDA1","SQLHOSTVAR",6)=HIRE_DATE
380 .SQLDA("SQLDA1","SQLHOSTVAR",7)=JOB_CODE
390 .SQLDA("SQLDA1","SQLHOSTVAR",8)=EDUCATION_LEVEL
400 .SQLDA("SQLDA1","SQLHOSTVAR",9)=SALARY
410 .SQLDA("SQLDA1","SQLHOSTVAR",10)=PHONE_NUMBER
420 .SQLDA("SQLDA1","SQLHOSTVAR",11)=WORK_DEPARTMENT
430 .SQLDA("SQLDA1","SQLHOSTVAR",12)=SEX
440 .|
450 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1
460 .END
470 EXIT

Appendix A Sample MANTIS SQL support programs

66 P39-3105-00

Update program using static SQL statements
This program updates one employee in an employee table using static
SQL statements.

10 ENTRY STATIC_UPDATE

20 .BIG HIRE_DATE,BIRTH_DATE

30 .TEXT EMPLOYEE_NUMBER(6)

40 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

50 .|

60 .EMPLOYEE_NUMBER="000120"

70 .FIRST_NAME="JOHN"

80 .MIDDLE_INITIAL="H"

90 .LAST_NAME="DOE"

100 .BIRTH_DATE=490113

110 .HIRE_DATE=880120

120 .|

130 .EXEC_SQL

140 ..|

150 ..| UPDATE DSN82.TEMPL

160 ..|

170 ..| SET FIRSTNME = :FIRST_NAME,

180 ..| MIDINIT = :MIDDLE_INITIAL,

190 ..| LASTNAME = :LAST_NAME,

200 ..| BRTHDATE = :BIRTH_DATE,

210 ..| HIREDATE = :HIRE_DATE

220 ..|

230 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

240 .END

250 EXIT

Update program using dynamic SQL statements

MANTIS SUPRA SQL Programming 67

Update program using dynamic SQL statements
This program updates one employee in an employee table using dynamic
SQL statements.

10 ENTRY DYNAMIC_UPDATE

20 .BIG HIRE_DATE,BIRTH_DATE

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT DA(18),DAPARM(8)

50 .TEXT SQL_TEXT(254)

60 .|

70 .EMPLOYEE_NUMBER="000120"

80 .FIRST_NAME="JOHN"

90 .MIDDLE_INITIAL="H"

100 .LAST_NAME="DOE"

110 .BIRTH_DATE=490113

120 .HIRE_DATE=880120

130 .|

140 .SQL_TEXT="UPDATE DSN82.TEMPL SET "

150 .SQL_TEXT=SQL_TEXT+"FIRSTNME = ?, MIDINIT = ?, LASTNAME = ?, "

160 .SQL_TEXT=SQL_TEXT+"BRTHDATE = ?, HIREDATE = ? "

170 .SQL_TEXT=SQL_TEXT+"WHERE EMPNO = ? "

180 .|

190 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

200 .END

210 .|

220 .SQLDA("SQLDA1")=NEW

230 .DA="SQLDA1"

240 .DAPARM="SQLHOSTVAR"

250 .SQLDA(DA,"SQLMAX")=6

260 .SQLDA(DA,"SQLN")=6

270 .SQLDA(DA,DAPARM,1)=FIRST_NAME

280 .SQLDA(DA,DAPARM,2)=MIDDLE_INITIAL

290 .SQLDA(DA,DAPARM,3)=LAST_NAME

300 .SQLDA(DA,DAPARM,4)=BIRTH_DATE

310 .SQLDA(DA,DAPARM,5)=HIRE_DATE

320 .SQLDA(DA,DAPARM,6)=EMPLOYEE_NUMBER

330 .|

340 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

350 .END

360 EXIT

Appendix A Sample MANTIS SQL support programs

68 P39-3105-00

Select program using static SQL statements
This program retrieves employee information for one employee from an
employee table using static SQL statements.

10 ENTRY STATIC_SELECT

20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

50 .EMPLOYEE_NUMBER="000120"

60 .|

70 .EXEC_SQL:| DECLARE C1 CURSOR FOR

80 ..| SELECT * FROM DSN82.TEMPL

90 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

100 .END

110 .EXEC_SQL:| OPEN C1

120 .END

130 .EXEC_SQL:| FETCH C1 INTO :EMPLOYEE_NUMBER,

140 ..| :FIRST_NAME,

150 ..| :MIDDLE_INITIAL,

160 ..| :LAST_NAME,

170 ..| :BIRTH_DATE,

180 ..| :HIRE_DATE,

190 ..| :JOB_CODE,

200 ..| :EDUCATION_LEVEL,

210 ..| :SALARY,

220 ..| :PHONE_NUMBER,

230 ..| :WORK_DEPARTMENT,

240 ..| :SEX

250 .END

260 .EXEC_SQL:| CLOSE C1

270 .END

280 EXIT

Select program using dynamic SQL statements

MANTIS SUPRA SQL Programming 69

Select program using dynamic SQL statements
This program retrieves employee information for one employee from an
employee table using dynamic SQL statements.

10 ENTRY DYNAMIC_SELECT
20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL
30 .TEXT EMPLOYEE_NUMBER(6)
40 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)
50 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)
60 .TEXT SQL_TEXT(254)
70 .|
80 .EMPLOYEE_NUMBER="000120"
90 .SQL_TEXT="SELECT * FROM DSN82.TEMPL "
100 .'"WHERE EMPNO=? "
110 .|
120 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT
130 .END
140 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1
150 .END
160 .EXEC_SQL:| OPEN C1 USING :EMPLOYEE_NUMBER
170 .END
180 .SQL_TEXT="FETCH C1 USING DESCRIPTOR"
190 .EXEC_SQL:| PREPARE S2 FROM :SQL_TEXT
200 .END
210 .SQLDA("SQLDA1")=NEW
220 .EXEC_SQL:| DESCRIBE S2 INTO SQLDA1
230 .END
240 .EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1
250 .END
260 .EXEC_SQL:| CLOSE C1
270 .END
280 .|
290 .EMPLOYEE_NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",1)
300 .FIRST_NAME=SQLDA("SQLDA1","SQLHOSTVAR",2)
310 .MIDDLE_INITIAL=SQLDA("SQLDA1","SQLHOSTVAR",3)
320 .LAST_NAME=SQLDA("SQLDA1","SQLHOSTVAR",4)
330 .BIRTH_DATE=SQLDA("SQLDA1","SQLHOSTVAR",5)
340 .HIRE_DATE=SQLDA("SQLDA1","SQLHOSTVAR",6)
350 .JOB_CODE=SQLDA("SQLDA1","SQLHOSTVAR",7)
360 .EDUCATION_LEVEL=SQLDA("SQLDA1","SQLHOSTVAR",8)
370 .SALARY=SQLDA("SQLDA1","SQLHOSTVAR",9)
380 .PHONE_NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",10)
390 .WORK_DEPARTMENT=SQLDA("SQLDA1","SQLHOSTVAR",11)
400 .SEX=SQLDA("SQLDA1","SQLHOSTVAR",12)
410 EXIT

Appendix A Sample MANTIS SQL support programs

70 P39-3105-00

Delete program using static SQL statements
This program deletes one employee from an employee table using static
SQL statements.

10 ENTRY STATIC_DELETE

20 .TEXT EMPLOYEE_NUMBER(6)

30 .EMPLOYEE_NUMBER "000120"

40 .EXEC_SQL

50 ..|

60 ..| DELETE FROM DSN82.TEMPL

70 ..|

80 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

90 .END

100 EXIT

Delete program using dynamic SQL statements

MANTIS SUPRA SQL Programming 71

Delete program using dynamic SQL statements
This program deletes one employee from an employee table using
dynamic SQL statements.

10 ENTRY DYNAMIC_DELETE

20 .TEXT EMPLOYEE NUMBER(6),SQL TEXT(254)

30 .EMPLOYEE_NUMBER "000120"

40 .SQL_TEXT="DELETE FROM DSN82.TEMPL WHERE EMPNO = ? "

50 .|

60 .EXEC_SQL

70 ..|

80 ..| PREPARE S1 FROM :SQL_TEXT

90 ..|

100 .END

110 .EXEC_SQL

120 ..|

130 ..| EXECUTE S1 USING :EMPLOYEE_NUMBER

140 ..|

150 .END

160 EXIT

Appendix A Sample MANTIS SQL support programs

72 P39-3105-00

Column select program using dynamic SQL statements
This program uses dynamic SQL statements to retrieve column names,
data types, lengths, and the first row of the columns from a table
specified by the user.

10 ENTRY SQL_LIST_TABLES

20 .|

30 .| THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

40 .|

50 .TEXT TABLE_NAME(32)

60 .TEXT SQL_FUNCTION(100)

70 .SHOW"PLEASE ENTER TABLE NAME "

80 .OBTAIN TABLE_NAME

90 .SQL_FUNCTION="SELECT * FROM" +TABLE_NAME

100 .EXEC_SQL

110 ..| PREPARE S1 FROM :SQL_FUNCTION

120 .END

130 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1

140 .END

150 .EXEC_SQL:| OPEN C1

160 .END

170 .SQL_FUNCTION="FETCH C1 USING DESCRIPTOR"

180 .EXEC_SQL:| PREPARE S2 FROM :SQL_FUNCTION

190 .END

200 .SQLDA("SQLDA1")=NEW

210 .EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

220 .END

230 .EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

240 .END

250 .EXEC_SQL:| CLOSE C1

260 .END

280 .SHOW"COLUMN NAME",AT(45),"LENGTH",AT(55),"DATA"

290 .FOR COUNTER=1 TO SQLDA("SQLDA1","SQLN")

300 ..SHOW SQLDA("SQLDA1","SQLCOLNAME",COUNTER),

310 ..'AT(25),TXT(SQLDA("SQLDA1","SQLCOLTYPE",COUNTER)),

320 ..'AT(45),TXT(SQLDA("SQLDA1","SQLCOLLENGTH",COUNTER)),

330 ..'AT(55),(SQLDA("SQLDA1","SQLHOSTVAR",COUNTER))

350 .END

360 .WAIT

370 EXIT

MANTIS SUPRA SQL Programming 73

B
Features not supported

The following features are not supported:

♦ The USING LABELS clause of the DESCRIBE statement is not
implemented.

♦ Host variables may not be specified in a SELECT list. In the example
below, the VX host variable is invalid:
SELECT A,:VX,C

INTO :VA,:VB,:VC

♦ Exact line number reference when syntax errors are detected is not
supported in all cases. Once control is transferred to SUPRA to
execute an SQL statement, MANTIS no longer has control and
therefore does not know on which line the error occurred. For
example, if an error occurred in the INTO clause of the following
statement:

01330 ..X=X+1

01340 ..EXEC_SQL

01350 ...|SELECT A,B,C

01360 ...|INTO :VA,:VB),:VC

01370 ...|FROM TABLE.1

01380 ...|WHERE A=1

01390 ..END

01400 ..X=X-VA

<--- Error in this line

Appendix B Features not supported

74 P39-3105-00

 MANTIS will point to the beginning of the SQL statement as being in
error. For example:

01330 ..X=X+1

01340 ..EXEC_SQL

===>0 ...|SELECT A,B,C

01360 ...|INTO:VA,:VB),:VC

01370 ...|FROM TABLE.1

01380 ...|WHERE A=1

01390 ..END

01400 ..X=X-VA

<--- MANTIS points to this line
<--- Error in this line

♦ The contents of one SQLDA structure cannot be implicitly copied into
another in a single instruction. The following statement is not
permitted:
SQLDA("NAME2")=SQLDA("NAME1")

However, each element of an SQLDA can be moved individually to the
corresponding element of a different SQLDA.

MANTIS SUPRA SQL Programming 75

C
Comparing SQL in MANTIS SQL
support to SQL in COBOL

The following general considerations apply to SQL in MANTIS SQL
Support as compared to SQL in COBOL:

♦ SQL statements are embedded in a MANTIS application program as
MANTIS comments. Each SQL statement is bracketed with an
EXEC_SQL-END block. No MANTIS comments are permitted within
the EXEC_SQL-END block. All comments within the block are
considered SQL statement text.

♦ In the SQL WHENEVER statement:

- A MANTIS DO statement replaces the GOTO clause, and
FAULT replaces STOP.

- The default for the SQLERROR condition is FAULT; in SQL in
COBOL, the default is CONTINUE.

- WHENEVER settings may have different ranges of applicability
than they would in SQL in COBOL.

♦ SQLCA elements are accessed through the SQLCA function and
statement, rather than as items of data.

♦ SQLDA elements are accessed through the SQLDA function and
statement, rather than as items of data.

♦ MANTIS SQL Support does not support the SQL INCLUDE
statement. The SQLCA and SQLDA functions eliminate the need to
INCLUDE these structures.

♦ In MANTIS, quotation marks (") delimit character-string constants. In
SQL, apostrophes (‘) delimit character-string constants.

♦ SQL data types are supported in MANTIS compatible data types.
These are listed in the following table.

Appendix C Comparing SQL in MANTIS SQL support to SQL in COBOL

76 P39-3105-00

Permissible data type conversions between SQL and MANTIS are listed
in the following table. Note that this table is an exact replica of the table
under “Converting data between MANTIS SQL support and SUPRA” on
page 26; it is repeated here for convenience.

SQL data type MANTIS data type Notes
0 (Fixed) BIG/SMALL Loss of precision may occur when converting

from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

1 (Float) BIG/SMALL Loss of precision may occur when converting
from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

 2
 (Character)

TEXT When converting in either direction, truncation
may occur.

 3 (Byte) TEXT When converting in either direction, truncation
may occur.

 4 (Date) TEXT When converting in either direction, truncation
may occur.

 5 (Time) TEXT When converting in either direction, truncation
may occur.

 6 (String) TEXT When converting in either direction, truncation
may occur.

 10 (DBYTE) KANJI When converting in either direction, truncation
may occur.

Comparing SQL in MANTIS SQL support to SQL in COBOL

MANTIS SUPRA SQL Programming 77

♦ When dynamic SQL statements are used, only data type codes for
MANTIS-compatible data types are returned in the SQLHOSTVARTY
element in the SQLDA. Valid data types are thus limited to those
listed in the preceding table.

♦ When a null value is encountered in an optional column and the user
did not code a host indicator variable for the same column, MANTIS
and COBOL yield different results at run-time.

 Using SUPRA/SQL with MANTIS:

- An SQLCODE of 0 is returned by SUPRA to the user program.
This is because MANTIS internally has host variable indicators
for each host variable.

- Depending on how the C$OPCUST option SQLNDTA is
specified:

 If SQLNDTA=N, the user host variable is not updated if the null
indicator was internally received for the column.

 If SQLNDTA=Y, the user host variable is cleared if the null
indicator was internally received for the column.

 For SUPRA/SQL with COBOL using static SQL statements, the
precompiled program result at run-time is:

- An SQLCODE of -809 (error) is returned by SUPRA to the user
program. Refer to the Supra Messages and Codes Reference
Manual (SQL), P26-0128, message code CSWP0809/-0809, for
more information on this message.

- COBOL stops moving data to user host variables once the null
indicator is received.

Appendix C Comparing SQL in MANTIS SQL support to SQL in COBOL

78 P39-3105-00

MANTIS SUPRA SQL Programming 79

D
SQL keywords

This appendix lists the SQL keywords used by MANTIS SQL Support.
SQL keywords are not MANTIS reserved words and can be used in
MANTIS SQL programs. However, if SQL keywords are used as host
variable names in SQL statements, errors can occur. MANTIS SQL
Support does limited parsing of the SQL statement text before passing
the SQL statement to SUPRA for execution. During parsing, host
variables, which are the same as SQL keywords, may be taken as
keywords instead of host variables causing a MANTIS fault. In the
example below, MANTIS could display a fault message because
“:COLUMN” is used as a host variable but is an SQL keyword.
.TEXT COLUMN(10), COLUMN1(20), COLUMN2(10

.EXEC_SQL

..| SELECT COLUMN, COLUMN1, COLUMN2

..| INTO :COLUMN, :COLUMN1,:COLUMN2

..| FROM TABLEA

.END

The following table lists the SQL keywords used by MANTIS SQL
Support.

ALL AS

BEGIN BUFFER BY

CLOSE
COLUMN
COMMIT

CONNECT
CONTINUE
COPY

CURRENT
CURSOR

DATE
DBNAME
DECLARE

DELETE
DESCRIBE
DESCRIPTOR

DO
DROP

Appendix D SQL keywords

80 P39-3105-00

END EXECUTE

FAULT
FETCH
FIRST

FIRSTPOS
FOR

FOUND
FROM

HOLD

IDENTIFIED
IMMEDIATE
INCLUDE

INDEX
INDEXNAME
INSERT

INTO
IS

KEY

LAST LENGTH

NEXT NOT

OF OPEN OUT

PACKAGESET
POS

PREPARE
PREV

PROGRAM
PUT

READ
RELEASE

RESET ROLLBACK

SAME
SEARCH
SECTION
SELECT

SERVER
SET
SQLERROR
SQLEXCEPTION

SQLID
SQLWARNING
STATISTICS

TABLE
TIME

TIMESTAMP
TIMEZONE

TO

UNION
UPDATE

USER USING

VALUES

WHENEVER
WHERE

WITH WORK

MANTIS SUPRA SQL Programming 81

Index

A

Accessing multiple databases 20
Action 32
Allocate an SQLDA 49
Apostrophe (‘) 75
Arrays 24, 61

B

Binding 39
Blanks 19

C

Colon character (
) 18

Comments 14
COMMIT 39
Comparing SQL in MANTIS to

COBOL 75
CONTINUE 33
Converting data between

MANTIS and SUPRA 26

D

Data type conversion 26, 76
Data types 75
Database number 20
Deallocate an SQLDA 50
DO 32
Dynamic SQL statements 15, 45

E

Embedding SQL statements 14,
17

Embedding SQL Statements 75
ENTRY statement parameters as

host variables 42
Error messages 41
EXEC_SQL-END 17

F

FAULT 33
Features not supported 73

H

Header elements See SQLDA
header elements

High-Performance Option (HPO)
39

Host variables 14, 21, 42

I
Indicator variables 14, 25

K

Keywords See SQL keywords

L

Large SQL statements 61

M

MANTIS entities as host
variables 22

MANTIS variables 14
Messages 41
Move data from SQLDA

repeating group into
MANTIS program 59

Move data into an SQLDA
repeating group 54

Multiple lines in a program 19

N

NOT FOUND 31

P

Prepare SQL statements larger
than 254 characters 61

Programming considerations 28

Q

Question mark (?) 45
Quotation marks (") 75

Index

82 P39-3105-00

R

Read header elements 57
Repeating elements See SQLDA

repeating elements
RESET 39
ROLLBACK 39
Rules for embedding 17
Running a program from a line

number 40

S

Sample programs 63
Scope of SQL cursors and

statements 29
SELECT statement 14
Set SQLDA header information

51
Spaces 19
SQL in COBOL 13, 75
SQL keywords 79
SQL WHENEVER 30
SQLCA 35

elements 38
function 37
in COBOL 75
statement 35

SQLCOLFRAC 56
SQLCOLIO 56
SQLCOLLENGTH 56
SQLCOLMODE 56
SQLCOLNAME 56
SQLCOLTYPE 56
SQLD 53
SQLDA 47

function 57
header elements 48, 53
in COBOL 75
repeating elements 48, 56
statement 49

SQLDAID 53
SQLERROR 31
SQLEXCEPTION 31
SQLHOSTIND 56
SQLHOSTVAR 56
SQLHOSTVARTY 56
SQLMAX 53
SQLN 53
SQLWARNING 31
Static SQL statements 15

T

Text literals 20

V

Variables See Host variables,
Indicator variables, MANTIS
variables

Vertical bar (|) 14, 18

W

WHENEVER 30
declarative statement 34
defaults 33
in COBOL 75
scope 34

WHILE loop 34

	Back to Welcome (OS/390, VSE/ESA)
	About this book
	Using this document
	Document organization
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - Overview of MANTIS SQL support
	Embedding SQL statements in MANTIS programs
	Static and dynamic SQL statements
	Static SQL statements
	Dynamic SQL statements
	Coding static and dynamic SQL statements

	Chapter 2 - Embedding SQL statements in MANTIS programs
	Rules for embedding SQL statements in a MANTIS program
	Accessing multiple SUPRA databases From MANTIS
	Coding host variables in SQL statements
	Coding indicator variables in SQL statements
	Converting data between MANTIS SQL support and SUPRA

	Chapter 3 - Programming considerations
	Scope of SQL cursors and statements
	SQL WHENEVER statement
	Using SQL WHENEVER as a declarative statement
	Scope of the WHENEVER statement

	SQLCA in MANTIS SQL support
	Binding with the high-performance option (HPO)
	SUPRA's COMMIT and ROLLBACK versus MANTIS SQL support's COMMIT and RESET
	Running a program from a line number
	Error messages
	Maximum number of host variables
	Using ENTRY statement parameters as host variables

	Chapter 4 - Dynamic SQL statements
	SQLDA statement and function
	Allocate an SQLDA
	Deallocate an SQLDA SQLDA(sqlda_name)=QUIT
	Set SQLDA header information
	Move data into an SQLDA repeating group
	Read header elements
	Move data from an SQLDA repeating group into a MANTIS program

	SQL statements larger than 254 characters

	Appendix A - Sample MANTIS SQL support programs
	Insert program using static SQL statements
	Insert program using dynamic SQL statements
	Update program using static SQL statements
	Update program using dynamic SQL statements
	Select program using static SQL statements
	Select program using dynamic SQL statements
	Delete program using static SQL statements
	Delete program using dynamic SQL statements
	Column select program using dynamic SQL statements

	Appendix B - Features not supported
	Appendix C - Comparing SQL in MANTIS SQL support to SQL in COBOL
	Appendix D - SQL keywords
	Index

